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STUDY QUESTION: Is there an association between low-to-moderate levels of prenatal alcohol exposure (PAE) and children’s facial
shape?

SUMMARY ANSWER: PAE before and during pregnancy, even at low level (<12 g of alcohol per week), was found associated with the
facial shape of children, and these associations were found attenuated as children grow older.

WHAT IS KNOWN ALREADY: High levels of PAE during pregnancy can have significant adverse associations with a child’s health
development resulting in recognizably abnormal facial development.

STUDY DESIGN, SIZE, DURATION: This study was based on the Generation R Study, a prospective cohort from fetal life onwards
with maternal and offspring data. We analyzed children 3-dimensional (3D) facial images taken at ages 9 (n¼ 3149) and 13 years
(n¼ 2477) together with the data of maternal alcohol consumption.

PARTICIPANTS/MATERIALS, SETTING, METHODS: We defined six levels of PAE based on the frequency and dose of alcohol
consumption and defined three tiers based on the timing of alcohol exposure of the unborn child. For the image analysis, we used 3D
graph convolutional networks for non-linear dimensionality reduction, which compressed the high-dimensional images into 200 traits
representing facial morphology. These 200 traits were used for statistical analysis to search for associations with PAE. Finally, we generated
heatmaps to display the facial phenotypes associated with PAE.

MAIN RESULTS AND THE ROLE OF CHANCE: The results of the linear regression in the 9-year-old children survived correction for
multiple testing with false discovery rate (FDR). In Tier 1 where we examined PAE only before pregnancy (exposed N¼ 278, unexposed
N¼ 760), we found three traits survived FDR correction. The lowest FDR-P is 1.7e–05 (beta¼ 0.021, SE¼ 0.0040) in Trait #29; In Tier
2b where we examine any PAE during first trimester (exposed N¼ 756; unexposed N¼ 760), we found eight traits survived FDR correc-
tion. The lowest FDR-P is 9.0e�03 (beta ¼ �0.013, SE¼ 0.0033) in Trait #139. Moreover, more statistically significant facial traits were
found in higher levels of PAE. No FDR-significant results were found in the 13-year-old children. We map these significant traits back to
the face, and found the most common detected facial phenotypes included turned-up nose tip, shortened nose, turned-out chin, and
turned-in lower-eyelid-related regions.

VC The Author(s) 2023. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
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LIMITATIONS, REASONS FOR CAUTION: We had no data for alcohol consumption more than three months prior to pregnancy
and thus do not know if maternal drinking had chronic effects. The self-reported questionnaire might not reflect accurate alcohol measure-
ments because mothers may have denied their alcohol consumption.

WIDER IMPLICATIONS OF THE FINDINGS: Our results imply that facial morphology, such as quantified by the approach we
proposed here, can be used as a biomarker in further investigations. Furthermore, our study suggests that for women who are pregnant
or want to become pregnant soon, should quit alcohol consumption several months before conception and completely during pregnancy
to avoid adverse health outcomes in the offspring.

STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Erasmus Medical Centre, Rotterdam, the Erasmus
University Rotterdam, and the Netherlands Organization for Health Research. V.W.V.J. reports receipt of funding from the Netherlands
Organization for Health Research (ZonMw 90700303). W.J.N. is a founder, a scientific lead, and a shareholder of Quantib BV.
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Introduction
High levels of prenatal alcohol exposure (PAE) during pregnancy can
have significant adverse effects on a child’s health development result-
ing in fetal alcohol spectrum disorder (FASD). FASD is defined as a
combination of growth retardation, neurological impairment and rec-
ognizably abnormal facial development (Jones and Smith, 1973; Poskitt
1984). The association of low–moderate PAE with the child’s health is
less known, but could still have severe consequences for the child’s
health, including lower birth weight, smaller birth size, and preterm
birth (Little, 1977; Jaddoe et al., 2007).

Facial morphology can serve as a biomarker for health conditions
and indicate developmental problems (Zaidel et al., 2005; Smith et al.,
2006; Tzahor, 2009; Cordero et al., 2011). Since low–moderate PAE
is associated with the child’s development, it might be also associated
with the facial morphology. However, the results of previous research
are ambiguous.

Douglas and Mutsvangwa (2010) summarized the main approaches to
detect the association between PAE and the human face and concluded
that compared with direct craniofacial anthropometry (Farkas, 1994) or
measurement from photographs (Astley and Clarren, 1996), 3-dimen-
sional (3D) surface imaging is the most promising way to reduce mea-
surement error. For this reason, Muggli et al. (2017) performed a
regression using spatially-dense facial quasi-landmark coordinates as the
outcome variables, in a moderately sized study of 434 12-month-old
infants. After adjusting for potential covariates, significant facial trait asso-
ciations were found at low–moderate levels of PAE, mainly with shape
of the forehead, nose, and areas near eyes. Howe et al. (2019) per-
formed a landmark-distance measurement on the 3D face in 4233 chil-
dren (mean age: 15.4), but found no evidence of association with low–
moderate PAE. There might be three reasons explaining why Muggli
et al. (2017) and Howe et al. (2019) had opposite outcomes. (i) The as-
sociation between low–moderate PAE and facial morphology of children
does not exist; (ii) The association exists. However, the landmark-
distance approach used in the Howe et al. (2019) study does not
capture the complexity of facial morphology and thus missed the associ-
ation; (iii) The association exists. However, the participants in the Howe
et al. (2019) study were much older than those in the study of Muggli
et al. (2017) and the association of PAE with the facial morphology
might attenuate during childhood and adolescence. The present study
clarifies this and explores which reason is the truth.

Recently, deep neural networks (DNNs) (LeCun et al., 2015), a
data-driven method, which can extract key information from high-
dimensional input data, has become the state-of-the-art method for
clinical applications (Miotto et al., 2016; Asaoka et al., 2020; Dwivedi
et al., 2020). One type of DNN architecture used for dimensionality
reduction is the auto-encoder (Kingma and Welling, 2019) typically
consisting of an encoder and decoder. The encoder is able to com-
press the high-dimensional 3D facial shape into low-dimensional repre-
sentations of the facial morphology. The decoder then resamples
these representations back to reconstruct the 3D facial shape.

In this article, we applied a deep learning algorithm to 3D photo-
graphs of children from a multi-ethnic prospective pregnancy cohort.
We used an auto-encoder to reduce the facial complexity and then
examined association of low-dimensional representation with PAE be-
fore and during pregnancy. Furthermore, we also attempted to predict
PAE from children’s facial shape, to test if facial morphology can be a
biomarker that provides additional and independent clues for PAE
diagnosis.

Materials and methods

Design and study population
This study was embedded in the Generation R Study, an ongoing
population-based cohort study of pregnant women and their children
from fetal life onwards. The goal is to identify early environmental and
genetic causes leading to normal and abnormal growth, development,
and health (Jaddoe et al., 2006). All women living in the study area of
Rotterdam, the Netherlands, who delivered between April 2002 and
January 2006 were eligible. A total of 9778 participants were enrolled
in the study. Information about maternal alcohol consumption was
obtained by postal questionnaires in early, mid-, and late pregnancy.
Response rates for these questionnaires were 91%, 80%, and 77% re-
spectively (Jaddoe et al., 2007). After removing missing questionnaires,
7409 (76%) mothers have completed alcohol information before
and during pregnancy. 3D facial images of the children were taken at 9
and 13 years old. The population of children consisted of 17 different
ethnicities. We selected four major ethnicities (Dutch, non-Dutch
Western, Turkish, and Moroccan) and clustered them into two
groups: Western (including Dutch and non-Dutch Western) and
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..non-Western (including Turkish and Moroccan). After data cleaning,
3149 9-year-old children and 2477 13-year-old children were included
in our study, with 1878 children assessed at both ages. A flow chart in
Fig. 1 shows the data cleaning process and division of the population.

Details of ethics approval
The study was approved by the Medical Ethics Committee (MEC) of
the Erasmus Medical Center Rotterdam, the Netherlands (MEC
198.782/2001/31), and written informed consent was obtained from
all participants themselves, or on that of their guardians/parents.

Alcohol measurements
Mothers who reported any drinking were asked to classify their aver-
age alcohol consumption into one of the following six levels: <1 drink
per week; 1–3 per week; 4–6 per week; 1 per day; 2–3 per day; and
>3 per day. An average alcoholic drink contains about 12 g of alcohol.
The subject number of each level could be found in Supplementary
Table SI.

We defined three tiers to understand the association of PAE in
different pregnancy stages. In all tiers, mothers who were abstinent

before and during pregnancy comprised the control group. Settings of
the exposed groups are shown in Fig. 1. Tier 1 defined mothers only
drinking up to 3 months before pregnancy as the exposed group, while
Tier 2 defined mothers drinking during pregnancy as the exposed
group. In Tier 2a, mothers who drank during the first trimester of
pregnancy but were abstinent during the other trimesters constituted
the exposed group. Tier 2b followed similar exposure definitions as
Tier 2a but included mothers who also drank during the other trimes-
ters in the exposed group. It is worth noting that 99% of mothers
who drank during pregnancy also drank up to 3 months before
pregnancy.

Data preprocessing
The 3D face images were collected with the 3dMD cameras system
(3dMD Corp). The distance and angle between the participants and
cameras were fixed when taking photos. We adopted 3D morphology
registration pipelines (Booth et al., 2018) to build the raw data into a
template-based dataset, in which each facial shape was modeled by a
3D graph (Hsu and Jain, 2001) with the same vertex number and edge
connectivity. Details about the data preprocessing can be found in the
Supplementary Material.

Figure 1. Flow chart of data cleaning, and definition of Tier 1, Tier 2a, and Tier 2b. In Tier 2, 99% of mothers drank before as well as
during pregnancy. PAE: prenatal alcohol exposure; 3D: 3-dimensional.
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..Dimensionality reduction to generate facial
traits
We used a 3D graph auto-encoder (Gong et al., 2019) for high-
dimensional facial shape analysis. As shown in Fig. 2, the auto-encoder
consists of encoder and decoder that can perform feature mapping in
a non-linear manner. The encoder compresses the high-dimensional
3D facial shape into N latent features, while the decoder reconstructs
the 3D facial shape from the latent features. By minimizing the error
between input and reconstructed facial shapes (Supplementary
Fig. S1), the main facial morphology is captured in the N latent fea-
tures. The encoding and decoding process can be formulated as:

Z ¼ Encode Fð Þ; (1)

F
0 ¼ Decode Zð Þ; (2)

where Z ¼ ½z0; z1; . . . ; zN� refers to the N latent features, EncodeðÞ
and DecodeðÞ refer to the down-sampling and up-sampling process
respectively. F denotes the input 3D facial shape, while F0 represents
the reconstructed facial shape. In this article, we defined these N
latent features as N facial traits. In order to make a tradeoff between
reconstruction error and dimensional complexity, we conducted
experiments on different numbers of traits (Supplementary Fig. S2).
The optimum number was found to be 200. As shown in
Supplementary Fig. S3, each trait represents different facial phenotypes.
Supplementary Fig. S8 shows the correlations between these 200
traits. A uniform measurement f ðzÞ was defined in Supplementary

Equation S1, to measure the effect size of each trait on the facial
shape. More implementation details can be found in the
Supplementary materials.

Statistical analysis
After the dimensionality reduction each 3D facial image is represented
by 200 traits. We performed linear regression analysis where each
trait was entered as dependent variable. We ran independent linear
regression models for 200 facial traits. To correct the p-value for mul-
tiple testing, we calculated the false discovery rate (FDR) with
a 5 0.05. We selected FDR-significant traits and mapped them back
to the 3D facial shape to visualize facial features linked with PAE.
Supplementary Figs. S3 and S4 explain implementation details about
the mapping. To partially demonstrate that the extracted phenotypes
can represent known biologically-driven differences among popula-
tions, we tested the proposed pipeline on visualizing the facial features
linked with sex (Supplementary Table SVI and Supplementary Fig. S7).
The result is in line with previous studies (Matthews et al., 2018;
Zhang et al., 2022). The statistical analysis we used in this study is
based on a trait-by-trait univariate approach. However, multivariate
approaches such as partial least squares regression and canonical cor-
relation analysis could be alternative solutions. We compared our uni-
variate approach with multivariate approaches (Supplementary Table
SVIII and Supplementary Fig. S12). No obvious difference between our
univariate approach and multivariate approaches was found in this
study. Since multivariate approaches might have the problem of

Figure 2. Framework of the auto-encoder. Red: down-sample process via four encoding layers; Blue: up-sample process via four decoding
layers. The size of the input face is 5023 � 3, which means it contains 5023 vertices and each vertex has three features (x, y, and z coordinates). In
down-sample process, the size of the input face is gradually reduced into 1256 � 32 (1256 vertices and 32 features), 314 � 32, 79 � 32, 20 � 64,
and 200 (200 latent facial traits). The up-sample process is mirrored from the down-sample process.
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overfitting (Faber and Rajkó, 2007), we adopted the trait-by-trait uni-
variate approach through this study for more conservative results.

The linear regression analysis was stratified for four factors: tier of
exposure (Table II and Fig. 3), level of exposure (Supplementary Table
SII, Fig. 4, and Supplementary Fig. S6), child ethnicity (Fig. 5), and age
(Supplementary Fig. S5). In the stratification for ethnicity, we addition-
ally performed a Dutch-only analysis (Supplementary Table SIX), be-
cause most subjects (>86%) in the exposed group are Dutch, while
statistical adjustment for ethnicity via linear regression is not as good
as a direct stratification. As for the stratification of age, the analysis
was performed separately in the 9-year-old children, the 13-year-old
children, and defined ‘growth’. The ‘growth’ was defined as the trait
differences between the 9- and 13-year-old children, including children
assessed twice. The traits of ‘growth’ were computed by:

Zgrowth ¼ Z13 � Z9; (3)

where Zgrowth refers to the growth of traits, Z13 and Z9 are traits of
13-year-old and 9-year-old children, respectively.

For all stratifications, the regression covariates included potential
confounders: ethnicity, maternal age, maternal smoking in pregnancy,
children BMI, age, and gender, where the ethnicity was coded as a
dummy variable.

Phenotypes recognition for PAE
The PAE prediction was only performed in children of Dutch national
origin. We used logistic regression to model binary prediction, where
200 facial traits were used for prediction of PAE. Non-exposed chil-
dren were set as the control group, while children with PAE level >1
were set as exposed group. The prediction accuracy was quantified
with the area under the receiver operating characteristic curve (AUC),
with 5-fold cross-validation. To adjust for potential biases, we first set
the above-mentioned covariates as independent variables and obtained
the baseline results (Model A). Then, we added facial traits as inde-
pendent variables to the baseline model (Model B).

F-test is often used to identify the model that best fits the popula-
tion from which the data were sampled (Ludden et al., 1994). Here,
we performed ANOVA F-tests separately on Model A and Model B
and then determined the F-value as well as P-value for each indepen-
dent variable.

Results
The characteristics of the study population are summarized in Table I.
Maternal smoking, maternal age, child BMI, and especially ethnicity
showed imbalanced distribution between the control and exposed
groups. The Dutch group had the highest proportion of different char-
acteristics, accounting for about 45% of the control group, while above
86% of the exposed groups. Supplementary Table SI further shows
details about the number of children of each level of PAE.

The results of the linear regression in the 9-year-old children sur-
vived correction for multiple testing with FDR. PAE before pregnancy
(Tier 1) and during pregnancy (Tiers 2a and 2b) was associated with
facial traits (Table II), and more FDR-significant facial traits were found
in Tier 2 than in Tier 1. Supplementary Table SII further shows results

of dose–response assessment for different levels of PAE: more FDR-
significant facial traits were found in higher levels of PAE.

No FDR-significant results were found in the 13-year-old children,
or for the ‘growth’ in the longitudinal analysis. The nominal significant
results (P-value <0.05) for 9-year-old, 13-year-old, and ‘growth’ can
be found in Supplementary Table SIII.

Each facial trait (index 0–199) represents different facial phenotypes,
which can be found in Supplementary Fig. S3.

Visualization of results
Figure 5 shows the facial shape transformations from control to the
Tier 2b group for the multi-ethnic, Western, and Dutch-only samples
at 9 years old. Figure 4 shows the shape transformations in the multi-
ethnic samples in Tier 2b at 9 years old, stratified for different PAE lev-
els. Figure 3 shows the shape transformations for different tiers.
Supplementary Figure S5 shows the shape transformations for different
ages (9 years old, 13 years old, and the ‘growth’). Figures 4 and 5 are
based on FDR-significant results, while Fig. 3 and Supplementary Fig.
S5 are based on nominal significant (P-value <0.05) results. For all
heatmaps, red areas refer to inward changes while blue areas refer to
outward changes of the face with respect to the geometric center of
the head (Supplementary Fig. S3). Supplementary Fig. S4 explains how
each heatmap was generated, by combining represented phenotypes
of each significant trait using their coefficients as weights. The most
common detected facial phenotypes included turned-up nose tip
(mostly contributed by Traits #36 and #69), shortened nose (#51
and #87), turned-out chin (#51 and #57), and turned-in lower-eyelid-
related regions (#51, #69#, and 57#).

Phenotypes recognition for PAE
Table III shows the prediction results of the logistic regression, where
Model B with facial traits as independent variables obtained slightly
higher AUC than Model A (baseline). Supplementary Table SIV further
shows the odds ratios (OR) of traits in the logistic regression. The
highest OR is 1.25 (P¼ 0.008; trait index 36) and 1.36 (P¼ 0.004; trait
index 14) for 9- and 13-year-old children, respectively. Supplementary
Table SV shows the ANOVA F-test results, which confirmed that the
prediction model was improved when facial traits were included.

Discussion
This study examined the association between PAE and children’s facial
shape by performing a multi-ethnic population-based analysis, using
state-of-the-art image analysis methodology including deep-learning
approaches. A significant association between PAE and facial morphol-
ogy was found in the 9-year-old children, with a dose–response rela-
tionship: more statistically significant facial traits were found in higher
levels of PAE. The most common detected facial phenotypes included
turned-up nose tip, shortened nose, turned-out chin, and turned-in
lower-eyelid-related regions.

The association between low levels of PAE and children’s facial
shape has been reported previously, but our study found an associa-
tion at a much lower dose of exposure. Muggli et al. (2017) found a
significant association at a low PAE level, <70 g of alcohol per week,
in 12-month-old babies. Iveli et al. (2007) considered a light
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.consumption <700 mL per trimester (roughly <46 g per week) and
found 66% of 79 newborns in the exposed group had some facial ab-
normality. However, in Tier 2b which assessed the dose–response
(Fig. 4 and Supplementary Table SII), where mothers who ever drank
heavily (>72 g a day) were excluded, we found that even if mothers
drank very little (<12 g per week) during pregnancy, the association
between PAE and children’s facial shape could be observed.

The associations of PAE with children’s facial shape attenuated
as children became older. As shown in Supplementary Fig. S5, the
PAE-related patterns decreased from the ‘9-year-old’ column to the
‘13-year-old’ column. In addition, by accessing longitudinal data, we
identified PAE-related growth patterns (‘growth’ is facial changes from
9 to 13 years defined as Equation (3)) which are consistent with the

attenuation of PAE-related patterns from 9 to 13 years. The result of
this longitudinal analysis is another piece of evidence that supports the
attenuation of the association. The results of Muggli et al. (2017) and
ours differ from those of Howe et al. (2019), where no association
was found in the 15-year-old children. Possibly this discrepancy can be
explained by a further attenuation of the association. Our results sug-
gest that as children grow up, the association of PAE with children’s fa-
cial shape could attenuate. This finding is consistent with the
associations of PAE with children’s weight, height, and head circumfer-
ence that attenuate as children become older (Day et al., 1999, 2002;
Carter et al., 2013). One possible explanation for this change over life-
time might be the impact of the environment. With age some alcohol-
related phenotypes on the facial shape of children might be obscured

.............................................................................................................................................................................................................................

Table I Characteristics of children and their mothers included in the analysis.

Characteristic Control
(Abstinent)

PAE Tier 1
(Exposed)

PAE Tier 2a
(Exposed)

PAE Tier 2b
(Exposed)

9-Year-old children (N 5 3149)

In total N¼ 760 N¼ 706 N¼ 1008 N¼ 1683

Ethnicity (%)

Western: Dutch 328(43.2) 608(86.1) 872(86.5) 1476(87.7)

Western: Non-Dutch 39(5.1) 74(10.5) 119(11.8) 181(10.8)

Non-Western: Turkish 212(27.9) 20(2.8) 7(0.7) 16(1.0)

Non-Western: Moroccan 181(23.8) 4(0.6) 10(1.0) 10(0.6)

Child’s gender, No. (%)

Male 357(47.0) 306(43.3) 489(48.5) 823(48.9)

Female 403(53.0) 400(56.7) 519(51.5) 860(51.1)

Child BMI, mean (SD) 18.6(3.2) 17.4(2.6) 17.1(2.2) 17.0(2.1)

Child age, mean (SD), years 9.8(0.4) 9.7(0.3) 9.8(0.3) 9.8(0.3)

Maternal smoking, No. (%)

No 556(73.2) 406(57.5) 508(50.4) 846(50.3)

Yes 204(26.8) 300(42.5) 500(49.6) 837(49.7)

Maternal age, mean (SD) 28.2(5.0) 30.4(4.7) 31.2(4.3) 31.7(4.1)

13-Year-old children (N 5 2477)

In total N¼ 519 N¼ 579 N¼ 822 N¼ 1379

Ethnicity (%)

Western: Dutch 237(45.7) 502(86.7) 714(86.9) 1206(87.5)

Western: Non-Dutch 33 (6.4) 61(10.5) 95(11.6) 152(11.0)

Non-Western: Turkish 122(23.5) 11(1.9) 10(1.2) 17(1.2)

Non-Western: Moroccan 127(24.5) 5(0.9) 3(0.4) 4(0.3)

Child’s gender, No. (%)

Male 247(47.6) 263(45.4) 407(49.5) 690 (50.0)

Female 272(52.4) 316(54.6) 415(50.5) 689 (50.0)

Child BMI, mean (SD) 21.1(4.0) 19.6(3.3) 19.1(2.7) 19.0(2.6)

Child age, mean (SD), years 13.7(0.4) 13.55(0.3) 13.6(0.3) 13.6(0.3)

Maternal smoking, No. (%)

No 372(71.7) 346(59.8) 417(50.7) 708 (51.3)

Yes 147(28.3) 233(40.2) 405(49.3) 671 (48.7)

Maternal age, mean (SD) 28.2(5.1) 30.7(4.7) 31.2(4.2) 31.7 (4.1)

PAE: prenatal alcohol exposure; Tier 1: PAE only before pregnancy; Tier 2a: PAE during first trimester, but abstinent during the other trimesters; Tier 2b: PAE during first trimester, or
PAE during all trimesters.
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by environmental influences, especially at the peak age (12–14 years
for boys and 10–12 years for girls) of facial development (Baughan
et al., 1979; Mellion et al., 2013). Further investigations on the mecha-
nism of association are needed to fully understand how the association
develops and then attenuates with age.

We compared our findings between different tiers and found that
results were similar in Tiers 2a and 2b (Tier 2a: PAE during first tri-
mester, but abstinent during the other trimesters; Tier 2b: any PAE
during first trimester). This suggests that the associations were mainly
explained by PAE during the first trimester of the pregnancy. Besides,
we also examined the association of PAE before pregnancy with child-
ren’s facial shape. A significant association was found in Tier 1 (PAE
only before pregnancy), but with less statistically significant facial traits
than those in Tier 2 (PAE during pregnancy). It is worth noting that
99% of drinking mothers in Tier 2 also drank before pregnancy, but
none of mothers drinking in Tier 1 also drank during pregnancy. Thus,
the comparison (Table II and Fig. 3) between Tiers 1 and 2 indicated
that more statistically significant facial traits were found associated with
PAE in mothers who continued to drink during pregnancy (Tier 2),
than in those who stopped when becoming pregnant (Tier 1). To the
best of our knowledge, this study is the first to examine the

association between PAE and children’s faces including exposures up
to 3 months before pregnancy. Previous studies show that PAE before
pregnancy is associated with other aspects of child developments, and
the association is explained by maternal metabolic disorders such as
impaired maternal glucose homeostasis and hepatic steatosis (Nykjaer
et al., 2014; Lee et al., 2020; McDonald and Watson, 2020). The
mechanism of the association with the face could be similar, but fur-
ther investigations are needed to test this.

We performed an additional Dutch-only analysis and compared it
with the multi-ethnic analysis. The top traits from Dutch-only result
are consistent with the top traits from multi-ethnic result, but with
overall higher P-values (Supplementary Table SIX). Moreover, the facial
heatmaps are also consistent between Dutch-only and multi-ethnic
results (Fig. 5 and Supplementary Fig. S5). It means that the linear re-
gression model successful adjusted for ethnicity as confounding bias in
the multi-ethnic group. Therefore, to increase the power, the multi-
ethnic samples were included in all other stratifications.

Strengths and limitations
This study is a well-described population-based prospective cohort of
multi-ethnic children. We have a large sample size with detailed PAE

.............................................................................................................................................................................................................................

Table II Details about FDR-significant traits in the multi-ethnic group.

Trait index P-value FDR-corrected P-value Coefficient Standard error Mean Standard deviation f(z)

Tier 1 (PAE only before pregnancy): Ne 5 278, Nc 5 760

29 (W) (D) 8.3e�08 1.7e�05 0.021 0.0040 0.0079 0.052 197.95

44 (W) (D) 1.8e�04 2.0e�02 �0.014 0.0038 0.0068 0.048 165.52

173 4.2e�04 3.0e�02 �0.014 0.0039 �0.0060 0.050 185.23

Tier 2a (PAE during first trimester, but abstinent during the other trimesters). Ne 5 563, Nc 5 760;

36 (W) (D) 4.2e�06 8.5e�04 0.021 0.0046 0.0105 0.064 269.78

29 3.8e�05 3.8e�03 0.014 0.0035 0.0079 0.052 197.95

139 (W) 1.0e�04 6.9e�03 �0.014 0.0035 0.0065 0.048 189.49

173 2.8e�04 1.4e�02 �0.013 0.0035 �0.0060 0.050 185.23

51 5.7e�04 2.3e�02 �0.030 0.0087 �0.0016 0.125 833.34

87 (W) (D) 6.2e�04 2.1e�02 �0.011 0.0032 3.5e�04 0.044 155.85

69 9.5e�04 2.7e�02 0.019 0.0059 �0.0170 0.080 485.34

125 1.5e�03 3.8e�02 0.015 0.0047 0.0155 0.066 287.89

Tier 2 b (any PAE during first trimester, or PAE during all trimesters): Ne 5 756, Nc 5 760

36 (W) (D) 7.1e�05 1.4e�02 0.017 0.0044 0.0105 0.064 269.78

139(W) 9.3e�05 9.3e�03 �0.013 0.0033 0.0065 0.048 189.49

29 1.9e�04 1.3e�02 0.013 0.0034 0.0079 0.052 197.95

51 2.5e�04 1.2e�02 �0.030 0.0083 -0.0016 0.125 833.34

69 5.6e-04 2.3e-02 0.019 0.0055 -0.0170 0.080 485.34

173 8.9e�04 3.0e�02 �0.011 0.0033 �0.0060 0.050 185.23

87 (W) (D) 1.3e�03 3.6e�02 �0.010 0.0031 3.5e�04 0.044 155.85

57(W) 1.9e�03 4.8e�02 0.022 0.0070 �0.0127 0.101 648.42

9-Year-old children for PAE level >1.
FDR: false discovery rate; PAE: prenatal alcohol exposure; Tier 1: PAE only before pregnancy; Tier 2a: PAE during first trimester, but abstinent during the other trimesters; Tier 2b:
PAE during first trimester, or PAE during all trimesters.
Ne refers to the number of the exposed samples, while Nc refers to the number of the control samples.
As defined in Supplementary Equation (S1), f(z) is the effect size of the trait on the facial shape.
Facial trait index with ‘(W)’ means they are also significant in the Western-only samples.
Facial trait index with ‘(D)’ means they are also significant in the Dutch-only samples.
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Figure 3. Nominal significant results of different tiers. Multi-ethnic, prenatal alcohol exposure (PAE) level >1. Tier 1: PAE only before preg-
nancy; Tier 2a: PAE during first trimester, but abstinent during trimesters two and three; and Tier 2b: PAE during first trimester, or PAE during all tri-
mesters. Red areas refer to inward changes while blue areas refer to outward changes of the face with respect to the geometric center of the head.

Figure 4. FDR (false discovery rate)-significant results of different levels of prenatal alcohol exposure (PAE), in Tier 2b, multi-
ethnic group for 9-year-old children. Level 1: <12 g of alcohol per week, N¼ 887; Levels 2 and 3: 12–72 g per week, N¼ 546; Levels 4–6:
>12 g per day, N¼ 79. Mothers who ever drank heavily (>72 g/day) were excluded in the dose–response assessment. Red areas refer to inward
changes while blue areas refer to outward changes of the face with respect to the geometric center of the head.
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..data that allows exposure classifications not available in many other
studies. For image analysis, the presence of non-linearity in the input
3D facial data has been a challenge for traditional approaches (e.g.
principal component analysis, PCA) which can only capture the linear-
ity in the input data (Ranjan et al., 2018). To overcome this difficulty,
we utilized a deep-learning approach, which enables non-linear map-
ping between the input 3D facial data and the latent traits (Gong
et al., 2019; Hanocka et al., 2019). In our additional experiments
(Supplementary Table SX), the improvement of the deep-learning
model was confirmed by improved generalization and specificity
(Nauwelaers et al., 2021) compared with the PCA-based model.
Lastly, to better interpret and validate the results in a conventional
manner, we integrated the deep-learning approach with traditional lin-
ear and logistic regression models. Benefiting from these settings, the
method used in this study is sensitive enough to detect association
with mild alcohol consumption.

To test the replicability of the deep-learning approach, we per-
formed three additional independent trainings of the auto-encoder,

and followed the linear regression analysis. Across these independent
runs, Supplementary Table SVII shows similar indices of facial traits
that survived the FDR. Moreover, Supplementary Fig. S11 shows simi-
lar visualization results on facial heatmaps. This means that our results
are consistent and robust across independent runs. We also tested
the correlation between latent traits (Supplementary Figs. S8, S9, and
S10). The distribution of correlations between 200 latent dimensions
is close to a Gaussian distribution with mean of 0.001§ 0.078 (SD),
which means that 95% of correlations are within 0.14 and 99.7% of
correlations are within 0.24. Besides, for traits which were found sta-
tistically significant (in Table II and Supplementary Table SII), the high-
est correlation is 0.22. From this perspective, the correlations
between the found significant traits are weak.

We also used derived traits for the prediction of PAE. Although the
AUC increase with facial traits was rather small, the result still indi-
cated that facial phenotypes provided additional and independent clues
for association of PAE, which were confirmed by the OR and F-tests
(Supplementary Tables SIV and SV).

Figure 5. FDR (false discovery rate)-significant results of the multi-ethnic (Dutch, non-Dutch Western, Turkish, and Moroccan),
the Western (Dutch and non-Dutch Western) and the Dutch-only samples, PAE (prenatal alcohol exposure) level >1 for 9-year-
old children in Tier 2b (any PAE during first trimester). Red areas refer to inward changes while blue areas refer to outward changes of the
face with respect to the geometric center of the head.

.............................................................................................................................................................................................................................

Table III PAE prediction AUC with 5-fold cross-validation, for children of Dutch national origin, PAE level > 1, Tier 2b.

Models Independent variables AUC in 9-year-old
Ne 5 670, Nc 5 329

AUC in 13-year-old
Ne 5 543, Nc 5 236

Model A Maternal age, maternal smoking in pregnancy, children BMI, age and gender 0.769 0.756

Model B All independent variable in Model A, and 200 facial traits 0.782 0.757

PAE: prenatal alcohol exposure; Tier 2b: PAE during first trimester, or PAE during all trimesters; PAE level 1: <1 drink per week; PAE level 2: 1–3 per week; PAE level 3: 4–6 per
week; PAE level 4: 1 per day; PAE level 5: 2 and 3 per day; PAE level 6: >3 per day.
An average alcoholic drink contains about 12 g of alcohol.
Ne refers to the number of the exposed samples, while Nc refers to the number of the control samples.
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Craniofacial development closely corresponds to brain development

(Naqvi et al., 2021). Thus, classic facial features of FASD such as short
palpebral fissure, smooth philtrum, and thin upper lip have been linked
to brain abnormalities and cognitive outcome in FASD and have been
used to diagnose children at risk of developing neurobehavioral deficits
(Suttie et al., 2013; Smith et al., 2014; Hoyme et al., 2016; Muggli
et al., 2017). Low–moderate PAE has also shown adverse associations
with children’s brain cognitive development, resulting in psychological
and behavioral problems (Larroque et al., 1995; Willford et al., 2006;
Lewis et al., 2012; Lees et al., 2020). Although the connection be-
tween these cognitive problems and facial phenotypes is still unknown,
the traits we discovered in this study are potentially useful in identifica-
tion of children at risk of developing these cognitive problems, which
should be further substantiated in future studies.

We had no data for alcohol consumption more than three months
prior to pregnancy and thus do not know if maternal drinking more
than three months prior to pregnancy could also have effects or not.
The self-reported questionnaire might not reflect the accuracy alcohol
measurements because mothers may have denied their alcohol
consumption.

Conclusions
The results of this study suggest that low–moderate maternal alcohol
consumption up to three months before and during pregnancy is asso-
ciated with the facial appearance of children. The association with fa-
cial morphology of the offspring was attenuated with increasing age.
Our results imply that facial morphology, such as quantified by the ap-
proach we proposed here, can be used as a biomarker in further
investigations. Furthermore, our study suggests that women who are
pregnant or want to become pregnant soon should quit alcohol con-
sumption several months before conception and completely during
pregnancy to avoid adverse health outcomes in the offspring.

Supplementary data
Supplementary data are available at Human Reproduction online.

Data availability
The data underlying this article are available in the article and in its
supplementary material.

Acknowledgments
The Generation R Study is conducted by the Erasmus MC in close col-
laboration with the School of Law and Faculty of Social Sciences of the
Erasmus University Rotterdam, the Municipal Health Service
Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation,
Rotterdam, and the Stichting Trombosedienst & Artsenlaboratorium
Rijnmond (STAR-MDC), Rotterdam. We gratefully acknowledge the
contribution of children and parents, general practitioners, hospitals,
midwives, and pharmacies in Rotterdam.

Authors’ roles
All authors made significant contributions to this scientific work and
approved the final version of the manuscript. X.L. was involved in the
conception and design of the study, performed the data analyses, and
wrote the article. G.V.R. supervised the data analyses and co-wrote
the article. M.K. contributed to the discussion and interpretation of
the results and article writing. H.T. made critical revisions of the manu-
script and provided extensive feedback. V.W.V.J., F.R., S.A.K., W.J.N.,
and E.B.W. were involved in the conception and design of the study,
reviewed the manuscript, and provided consultation regarding the
analysis and interpretation of the data.

Funding
This work was supported by Erasmus Medical Centre, Rotterdam, the
Erasmus University Rotterdam, and the Netherlands Organization for
Health Research. V.W.V.J. reports receipt of funding from the
Netherlands Organization for Health Research (ZonMw 90700303).

Conflict of interest
The authors declare the following financial interests/personal relation-
ships which may be considered potential competing interests: W.J.N.
is a founder, a scientific lead, and a shareholder of Quantib BV. The
other authors report no conflict of interest.

References
Amberg B, Romdhani S, Vetter T. Optimal step nonrigid ICP algo-

rithms for surface registration. In: Conference on Computer Vision
and Pattern Recognition. Institute of Electrical and Electronics
Engineers (IEEE), Minneapolis, MN, USA, 2007, pp.1–8. doi:10.
1109/CVPR.2007.383165.

Asaoka R, Murata H, Asano S, Matsuura M, Fujino Y, Miki A, Tanito
M, Mizoue S, Mori K, Suzuki K et al. The usefulness of the Deep
Learning method of variational autoencoder to reduce measure-
ment noise in glaucomatous visual fields. Sci Rep 2020;10:7893.

Astley SJ, Clarren SK. A case definition and photographic screening
tool for the facial phenotype of fetal alcohol syndrome. J Pediatr
1996;129:33–41.

Baughan B, Demirjian A, Levesque GY, Lapalme-Chaput L. The pat-
tern of facial growth before and during puberty, as shown by
French-Canadian girls. Ann Hum Biol 1979;6:59–76.

Booth J, Roussos A, Ponniah A, Dunaway D, Zafeiriou S. Large scale
3D morphable models. Int J Comput Vis 2018;126:233–254.

Carter RC, Jacobson JL, Sokol RJ, Avison MJ, Jacobson SW. Fetal
alcohol-related growth restriction from birth through young adult-
hood and moderating effects of maternal prepregnancy weight.
Alcohol Clin Exp Res 2013;37:452–462.

Cordero DR, Brugmann S, Chu Y, Bajpai R, Jame M, Helms JA.
Cranial neural crest cells on the move: their roles in craniofacial
development. Am J Med Genet 2011;155:270–279.

Day NL, Leech SL, Richardson GA, Cornelius MD, Robles N, Larkby
C. Prenatal alcohol exposure predicts continued deficits in

10 Liu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/hum

rep/advance-article/doi/10.1093/hum
rep/dead006/7035056 by guest on 17 February 2023

https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dead006#supplementary-data
https://academic.oup.com/humrep/article-lookup/doi/10.1093/humrep/dead006#supplementary-data
http://doi.org/10.1109/CVPR.2007.383165
http://doi.org/10.1109/CVPR.2007.383165


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..offspring size at 14 years of age. Alcohol Clin Exp Res 2002;26:
1584–1591.

Day NL, Zuo Y, Richardson GA, Goldschmidt L, Larkby CA,
Cornelius MD. Prenatal alcohol use and offspring size at 10 years
of age. Alcohol Clin Exp Res 1999;23:863–869.

Douglas TS, Mutsvangwa TEM. A review of facial image analysis for
delineation of the facial phenotype associated with fetal alcohol
syndrome. Am J Med Genet Part A 2010;152A:528–536.

Dwivedi SK, Tjärnberg A, Tegnér J, Gustafsson M. Deriving disease
modules from the compressed transcriptional space embedded in
a deep autoencoder. Nat Commun 2020;11:856.
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